Genetic algorithm optimization of point charges in force field development: challenges and insights.

نویسندگان

  • Maxim V Ivanov
  • Marat R Talipov
  • Qadir K Timerghazin
چکیده

Evolutionary methods, such as genetic algorithms (GAs), provide powerful tools for optimization of the force field parameters, especially in the case of simultaneous fitting of the force field terms against extensive reference data. However, GA fitting of the nonbonded interaction parameters that includes point charges has not been explored in the literature, likely due to numerous difficulties with even a simpler problem of the least-squares fitting of the atomic point charges against a reference molecular electrostatic potential (MEP), which often demonstrates an unusually high variation of the fitted charges on buried atoms. Here, we examine the performance of the GA approach for the least-squares MEP point charge fitting, and show that the GA optimizations suffer from a magnified version of the classical buried atom effect, producing highly scattered yet correlated solutions. This effect can be understood in terms of the linearly independent, natural coordinates of the MEP fitting problem defined by the eigenvectors of the least-squares sum Hessian matrix, which are also equivalent to the eigenvectors of the covariance matrix evaluated for the scattered GA solutions. GAs quickly converge with respect to the high-curvature coordinates defined by the eigenvectors related to the leading terms of the multipole expansion, but have difficulty converging with respect to the low-curvature coordinates that mostly depend on the buried atom charges. The performance of the evolutionary techniques dramatically improves when the point charge optimization is performed using the Hessian or covariance matrix eigenvectors, an approach with a significant potential for the evolutionary optimization of the fixed-charge biomolecular force fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic algorithm-based approach for numerical solution of droplet status after Coulomb fission using the energy

As a droplet moves, due to evaporation at the surface, the droplet size is gradually reduced. Due to decreasing the size of the droplets moving in the spray core, the surface charges become closer and the repulsive force between the charges increases. When the Coulombic force overcomes the surface tension force (Rayleigh instability) the droplet breaks into smaller droplets (Coulomb fission). T...

متن کامل

Multi-objective Pareto optimization of bone drilling process using NSGA II algorithm

Bone drilling process is one the most common processes in orthopedic surgeries and bone breakages treatment. It is also very frequent in dentistry and bone sampling operations. Bone is a complex material and the machining process itself is sensitive so bone drilling is one of the most important, common and sensitive processes in Biomedical Engineering field. Orthopedic surgeries can be improved...

متن کامل

Numerical study and genetic algorithm optimization of hot extrusion process to produce rectangular waveguides

Rectangular waveguide is one of the earliest types of transmission lines. Rectangular waveguide can be produced by hot extrusion process. In this paper, the hot extrusion process of CuZn5 rectangular waveguide was investigated by Finite Element Method (FEM). In addition, Genetic Algorithm (GA) was used to optimize the die geometry and process conditions to achieve the lowest magnitude of extrus...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 119 8  شماره 

صفحات  -

تاریخ انتشار 2015